

Aperio® Wireless Access Control

Available through Authorized Channel Partners only. Contact your local ASSA ABLOY Door Security Solutions sales consultant for details.

Product Catalog

About ASSA ABLOY's Authorized Channel Partner and Certified Integrator Programs

The Corbin Russwin IN100 is part of the expanding ASSA ABLOY family of innovative products combining our proven mechanical locking devices with leading-edge technologies to provide integrated electronic access control solutions. As such, these products require training and certification for resellers and integrators to ensure proper product selection, successful deployment and customer satisfaction.

To aid our customers in this area, ASSA ABLOY has created two programs that provide the necessary training to sell, order, install and service our technology products, including Aperio wireless, Integrated Wiegand, IP-enabled and self-configurable intelligent components:

- The Authorized Channel Partner (ACP) program is open to resellers, who sell ASSA ABLOY's technology products to certified integrators and help with product selection based on the application.
- The Certified Integrator (CI) program provides hands-on training for security systems integrators and network administrators. Not only does this training familiarize certified integrator candidates with product features and applications, it also gives them valuable experience installing, commissioning and troubleshooting the products in a real-world environment.

For more information on the qualifications for becoming an ACP or CI, contact your local ASSA ABLOY Door Security Solutions sales consultant for details.

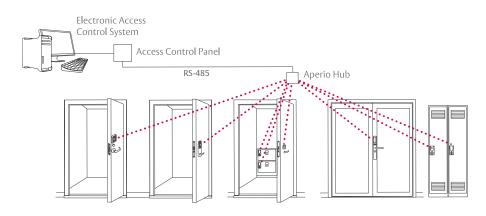
Sold through:

Authorized Channel Partner

Installed by:

Certified Integrator

Introduction


IN100 Aperio® Wireless Access Control

Index

Features and Benefits Overview	
ML2000 Mortise Locks Features	8
CLX3300 Cylindrical Locks Features	1
ED5000N Exit Devices Features	6
PED5000 Exit Devices Features	1
IN Series Retrofit Kits for Von Duprin® 98/99 series Features	
BL6600/FE6600/MP6600 Multi-Point Locks Features	
Alternative Power Options	8
and Exit Devices	
Mortise Locks	

For architectural specifications, consult your Door Security Solutions Representative.

The IN100 offers the convenience and flexibility of Aperio® wireless technology with the real-time communication of online access control, enabling remote lock/unlock in less than 10 seconds. The IN100 also provides simultaneous support for multiple credential types and HID Mobile Access® powered by Seos®. Featuring integrated ANSI/BHMA Grade 1 hardware, the IN100 is ideal for a variety of applications such as schools and corporate office buildings.

IP hub also available for direct connection to IT infrastructure

Features and Benefits

IN100 Aperio® Wireless Access Control

Features	Benefits
Utilizes IEEE 802.15.4 wireless communication	Eliminates the greatest cost and inconvenience of wired access control - the wiring around the door
	• Leverages EAC or IP infrastructure
	Ideal for hard-to-wire locations
multiCLASS SE® Technology from	Provides heightened security
HID Global®	 Supports: A wide range of credential technologies, offering easy migration to higher security credentials or consolidation of mixed credentials HID Mobile Access® powered by Seos®, for iOS® and Android™ devices
Real-time communication	 Alarms and events are communicated in real time to the EAC system Access decisions are determined in real time by the EAC system Schedules and door states can be initiated/changed in real time*
Centralized decision making	System capacities bounded by the EAC system, not the locking device
	Access decisions based on the current system information
Privacy button*	Enables shelter in place/local lockdown
	Offers privacy capabilities for applications such as restrooms
Smart Credential Cache	• Allows previously authorized credentials to be granted access when the EAC infrastructure is offline for any reason
	Can be enabled/disabled
	Programmable cache size/validity time
Integrated ANSI/BHMA Grade 1 hardware, available in cylindrical lock,	Flexibility to support various openings
mortise lock, multi-point and exit device configurations	Assurance of high quality Corbin Russwin hardware
Superior aesthetics	Blends into any environment seamlessly
	Designed to meet the requirements of designers and architects
	Available with a wide range of finishes and decorative levers
	Suites with other IN Series locks, regardless of technology

^{*}Access Control Partner software dependent. Contact your local ASSA ABLOY Integrated Solutions Specialist for more information.

Overview

IN100 Aperio® Wireless Access Control

Credential Support:

IN100 locks feature HID® multiCLASS SE® technology

to support the following credentials:

- High Frequency (13.56 MHz):
 - HID iCLASS®
 - HID iCLASS SE® (SIO-enabled)
 - HID iCLASS® Seos™
 - HID MIFARE® SE
 - HID DESFire® EV1 SE
 - MIFARE Classic
 - DESFire EV1
 - DESFire EV2/EV3 (EV1 Compatibility)
 - PIV/PIV-I (40-bit BCD, 64-bit BCD, 75 bit, 128-bit or 200-bit outputs)
- Low Frequency (125 kHz):
 - HID Prox®, AWID, EM4102
- NFC & BLE-enabled Mobile Phones:
 - HID Mobile Access® (BLE and NFC)
 - Apple Wallet Seos or DESFire® (NFC)
 - Google Wallet DESFire® (NFC)

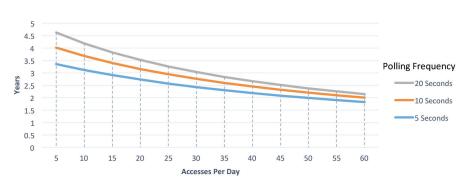
Environmental Specifications:

- Operating temperature:
 - -13°F (-25°C) to 151°F (66°C)
- Humidity: < 85% non-condensing
- Storage temperature:
 -22°F (-30°C) to 176°F (80°C)

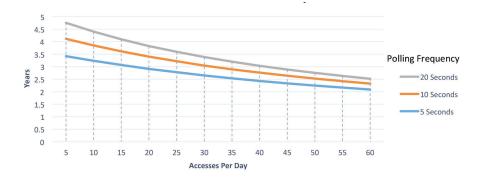
Security:

- AES 128-bit encryption
- For specific security information, please contact your local ASSA ABLOY Door Security Solutions sales representative or call 800-810-Wire.

Software:


- Works with ASSA ABLOY Aperio Access Control Partner software, allowing simple integration into existing or new systems
- Software Development Kits (SDK) and support available to integrate into other third party access control systems.

For assistance, email:


OEMSupport_Group@assaabloy.com

Battery Life

CYLINDRICAL LOCKS & EXIT DEVICES

MORTISE LOCKS

Battery life data was calculated using Duracell batteries.

Features

ML2000 IN100 Mortise Locks

Mortise Lock ML2000

Features

Handina

lock body.

Backset

Lockcase

(24mm).

Front

Door Thickness

2-3/4" (70mm).

1-3/4" (44mm) standard.

Quick Code section.

The IN100 mortise lock has a clean, crisp design and is available with a variety of lever designs and hardware finishes. EcoFlex® technology offers improved battery life.

Auxiliary Latchbolt

9/16" (14mm) effective throw and 3/8" (10mm) effective auxiliary latch deadlocking.

Deadbolt

One-piece stainless steel, 19/32 (15mm) x 1-1/4 (32mm) x 1" (25mm) throw.

Hub

Steel, 5/16" (8mm).

Strike

Wrought brass, bronze or stainless steel ANSI straight lip standard, 4-7/8" (124mm) x 1-1/4" (32mm) x 1-1/8" (29mm) lip to center.

Optional strikes, lip lengths and ANSI wrought strike box available.

Cylinder

CR1000-118-A01, 6-pin, L4, keyed random, furnished standard for 1-3/4" (44mm) door.

Optional cylinders available.

Keying Features Available

Master keying

Construction master keying

Visual key control

Concealed key control

Interchangeable core (LFIC OR SFIC)

Security

Security LFIC

Access 3

Access 3 LFIC

Pyramid

Pyramid LFIC

Heavy-gauge steel, 8" (203mm) x 1-1/4" (32mm) x 3/32" (2mm). Accommodates

Heavy-gauge chrome plated steel,

5-7/8" (149mm) x 4" (102mm) x 15/16"

non-beveled and beveled doors 1/8" (3mm) in 2" (51mm).

Handed; quick reversibility. The lockset can

Optional 2" (50mm) to 2-1/4" (57mm); see

be re-handed without disassembling the

Armored Front

Wrought brass, bronze or stainless steel attached by machine screws to lockcase front

Latch

Quick, reversible 2-piece mechanical with anti-friction insert 5/8" (16mm) x 1" (25mm) x 3/4" (19mm).

Environmental Specifications Operating Temperature:

-13°F (-25°C) to 151°F (66°C)

Operating humidity:

5% to 95% relative humidity

non-condensing

EcoFlex®

EcoFlex technology reduces power consumption up to 92% as certified by GreenCircle

ML20100 Monitoring

- Request to Exit
- Door Position (external)

ML20200 Monitoring

- Request to Exit
- Deadbolt
- Auxiliary latch
- Latch bolt
- DPS cylinder monitoring (indirect) integrated into lock body

Warranty

10-year limited mechanical.

2-year limited electrical.

Shipping Weight

Approx. 11 lbs.

Certification/Compliance

ANSI/BHMA

Meets A156.13, Grade 1 requirements. Meets A117.1 Accessibility Code. Meets A156.25 requirements.

UL /ULC-UL10C Positive Pressure

All locks listed for A label and lesser class doors, 4' (122cm) x 10' (305cm) single or 8' (244cm) x 10' (305cm) pair. Letter F and UL symbol on armored front indicate listing.

Any retrofit or other field modification to a fire rated opening can potentially impact the fire rating of the opening, and Corbin Russwin, Inc. makes no representations or warranties concerning what such impact may be in any specific situation. When retrofitting any portion of an existing fire rated opening, or specifying and installing a new fire-rated opening, please consult with a code specialist or local code official (Authority Having Jurisdiction) to ensure compliance with all applicable codes and ratings.

ML2000 IN100 Mortise Locks

Build your order string:

			Required Options Other Options			Other Options	
Function	Trim	Finish	Handing	Technology Code	Reader Code	Reader Modifier	Cylinder, Strike, Door Thickness
ML201				IN100	BIPS		

For finish, additional cylinder, and/or mechanical options, please refer to page 9.

Function	Туре	Monitoring	Function Description
ML20133 No Key Override No Deadbolt	Entry	• Request to Exit	Deadlocking latch Latch retracted by inside lever at all times Outside lever rigid except when in "passage" mode or valid credential presented
ML20134 With Key Override No Deadbolt	Entry	Door Position (external)	Deadlocking latch Latch retracted by inside lever at all times Untside lever rigid except when in "passage" mode or valid user code entered Key outside retracts latch No deadbolt function
ML20233 No Key Override No Deadbolt	Entry		Deadlocking latch Latch retracted by inside lever at all times Outside lever rigid except when in "passage" mode or valid user code entered
ML20234 With Key Override No Deadbolt	Entry	Request to Exit Deadbolt Auxiliary latch Latch bolt DPS cylinder monitoring (indirect) integrated into lock body	Deadlocking latch Latch retracted by inside lever at all times Utside lever rigid except when in "passage" mode or valid user code entered Key outside retracts latch No deadbolt function
ML20235 No Key Override With Deadbolt ¹	Entry		Deadlocking latch Latch and deadbolt retracted by inside lever at all times Outside lever rigid except when in "passage" mode or valid user code entered
ML20236 With Key Override With Deadbolt ¹	Entry		Deadlocking latch Latch and deadbolt retracted by inside lever and deadbolt at all times Outside lever rigid except when in "passage" mode or valid user code entered Key outside projects or retracts deadbolt and retracts latch

Reader Code	Credentials
BIPS	HID Prox®, iCLASS®, iCLASS SE®, iCLASS® Seos®, SIO on MIFARE® Classic, SIO on MIFARE DESFire® EV1 MIFARE Classic, MIFARE DESFire EV1, HID Mobile Access, Apple Wallet, Google Pay

Reader Modifier	Description
В	Black reader, black trim
MB	Black reader, metal trim

Note: Metal trim for the reader is supplied in the finish specified in the order string. It is not available in stainless steel (629/630/630C) but will be plated to match.

ML2000 IN Series Mortise Locks

Finishes

Description	Specify
Polished Brass, Clear Coated	605
Satin Brass, Clear Coated	606
Polished Bronze, Clear Coated	611
Satin Bronze, Clear Coated	612
Dark Oxidized Satin Bronze, Oil Rubbed	613
Dark Oxidized Satin Bronze - Equivalent	613E

Description	Specify
Polished Nickel	618
Satin Nickel	619
Polished Chrome	625
Satin Chrome	626
Satin Chrome with MicroShield®	626C
Black Oxidized Bronze, Oil Rubbed	722

Description	Specify
Bright Stainless Steel	629*
Satin Stainless Steel	630*
Satin Stainless Steel with MicroShield®	630C*
Black Suede Powder Coat	BSP
White Suede Powder Coat	WSP

^{*}Metal escutcheon trim (MB) plated to match

Roses

The roses shown are some of our most popular styles. To see the complete list of available roses, refer to page 33.

ЕЗ

The levers shown here are some of our most popular styles from the Muséo Collection. To see the complete range of levers, refer to pages

102

103

110

124²

 125^{2}

123²

Premium Levers

133

134²

136

138²

2 Lever returns within 1/2" (13 mm) of door face.

¹ Rose design suites with IN100 reader.

Quick Codes

ML2000 IN Series Mortise Locks

B 1 1 1	6
Description	Specify
Conventional 6-pin	(standard)
Conventional 7-pin	7P
Less Cylinder(s)	LC
LFIC	
LFIC 6-pin	C6
LFIC 6-pin with Temporary	CT6R
Construction Core (Red)	
LFIC 6-pin with Temporary Construction Core (Blue)	СТ6В
LFIC 6-pin with Temporary Construction Core (Green)	CT6G
LFIC 6-pin Less Core	CL6
LFIC 7-pin	C7
LFIC 7-pin with Temporary Construction Core (Red)	CT7R
LFIC 7-pin with Temporary Construction Core (Blue)	СТ7В
LFIC 7-pin with Temporary Construction Core (Green)	CT7G
LFIC 7-pin Less Core	CL7
SFIC 7 pin Less core	CL
SFIC 6-pin with Less Core	CLS6
SFIC 6-pin with SFIC	
disposable temporary core	CT6SD
SFIC 7-pin with Less Core	CLS7
SFIC 7-pin with SFIC	
disposable temporary core	CT7SD
Security	
Security	HS
Security IC	CHS
Access 3®	
Access 3® Patented	AP
Access 3® Security	AS
Access 3® High Security	AHS
Access 3® Patented IC	ACP
Access 3® Security IC	ACS
Access 3® High Security IC	ACHS
Pyramid	
Pyramid Fixed Core	PHS
Pyramid IC	PCHS
Pyramid IC Less Core	CLP
Pyramid with Temporary Construction Core	СТР
Pyramid Security	PS
Pyramid Security IC	PCS
Pyramid Disposable Core	CTPD
Keying and Keys	
6-pin Disposable Core	CT6D
7-pin Disposable Core	CT7D
Keyed Random (Standard)	KR
Construction Master Keyed (not available for Pyramid)	CMK
2 Keys per Lock	(standard)
More than 2 Keys	KY#
	(e.g., KY6)

Cylinders and Keying (Cont.)

, , , ,	
Description	Specify
Visual Key Control	
No Keying Data Stamped on Key or Cylinder	VKC0
Keys Only	VKC1
Cylinders and Keys (not for HS, CHS, PHS or PCHS)	VKC2
Cylinders Only (not for HS, CHS, PHS or PCHS)	VKC3
Concealed Key Control (Cl	KC)
CKC Cylinders with VKC Keys	CKC2
CKC Cylinders Only (not for PHS, PCHS)	CKC3

Miscellaneous Options

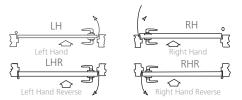
Description	Specify
Torx® head screws	M04
ANSI wrought strike box	M17
Knurling outside and inside ¹	M20 ²
Knurling outside only ¹	M21 ²
Knurling inside only ¹	M22 ²
Abrasive coat outside and inside ¹	M23
Abrasive coat inside only ¹	M24
Abrasive coat outside only ¹	M25

- Not available with Vineyard or Museo levers.
 All levers provided in a powder coat finish will
- 2 All levers provided in a powder coat finish wi be supplied with an abrasive coating

Door Thickness

Door Thickness	Specify
1-3/4" (44mm)	(standard)
1-7/8" (48mm)	D178
2" (51mm)	D200
2-1/8" (54mm)	D218
2-1/4" (57mm)	D214

Strikes


Strikes		
ANSI Lip to Center	ANSI Straight Lip Specify	Curved Lip Specify
7/8" (22mm)	SS078	N/A
1-1/8" (29mm)	(standard)	N/A
1-1/4" (32mm)	SS114	SA114
1-3/8" (35mm)	SS138	SA138
1-1/2" (38mm)	SS112	SA112
1-3/4" (44mm)	SS134	SA134
2" (51mm)	SS200	SA200
2-1/4" (57mm)	SS214	SA214
2-1/2" (64mm)	SS212	SA212
2-3/4" (70mm)	SS234	SA234
3" (76mm)	SS300	SA300
Open Back Strike	Door Thickness	Specify
	1-3/4" (44mm)	SB134
	2" (51mm)	SB200
_	2-1/4" (57mm)	SB214
Rabbeted front and	strike - Specify	SR118

Thumbturns

Description	Specify
Decorative	MT1
Decorative Square	MT2
Decorative Cylinder	MT2

Handing

Hand	Specify
Right Hand	RH
Left Hand	LH
Right Hand Reverse	RHR
Left Hand Reverse	LHR

Note: Arrow indicates secure side of door.

Features

CLX3300 IN100 Cylindrical Lock

Cylindrical Lock CLX33100

Features

Non-handed

Door Thickness

1-3/4" (44mm) to 2" (50mm) standard, 2" (50mm) to 2-1/4" (57mm) optional

Lock Chassis

Steel, zinc dichromated for corrosion resistance.

Backset

2-3/4" (70mm) standard.

Optional: 3-3/4" (95mm) and 5" (127mm).

Latchbolt

Stainless steel, 1/2" (13mm) throw. Optional: 3/4" (19mm) throw deadlocking fire latch for pair of doors.

Auxiliary Latchbolt

Deadlocking latchbolt prevents manipulation when door is closed.

Front

Wrought brass or stainless steel, 2-1/4" (57mm) x 1-1/8" (29mm). Accommodates non-beveled and beveled doors 1/8" (3mm) in 2" (51mm). Optional: rounded corners.

The IN100 CLX3300 design provides uniformity when used with other Corbin Russwin CLX3300 locks at a facility. The product features seven different lever designs, thirteen hardware finishes and cylinder override.

Strike

Wrought brass or stainless steel ANSI curved lip standard, 4-7/8" (124mm) x 1-1/4" (32mm) x 1-1/4" (32mm) lip to center

Optional strikes, lip lengths and ANSI wrought strike box available

Cylinder

Brass, 6-pin, L4 keyway, 0-bitted standard.

Keying Features Available

Master keying

Construction master keying

Visual key control

Concealed key control

Interchangeable core (LFIC or SFIC)

Security

Security LFIC

Access 3

Access 3 LFIC

Pyramid

Pyramid LFIC

Environmental Specifications

- Operating temperature:
 - -13°F (-25°C) to 151°F (66°C)
- Operating humidity: 5% to 95% relative humidity non-condensing

Keys

Two nickel silver standard.

Key Override

Standard not available with non-key override.

EcoFlex®

EcoFlex technology reduces power consumption up to 92% as certified by GreenCircle

Monitoring

- Request to Exit (Non-Handed)
- Door Position Switch (Supplied and mounted above the lock. Connects directly into the lock's electronics.)

Warranty

10-year limited mechanical;2-year limited electrical.

Shipping Weight Approx. 11 lbs.

Certification/Compliance

ANSI/BHMA

Meets A156.2 Grade 1 requirements.

California State Reference Code (Formerly Title 19, California State Fire Marshal Standard) All levers with returns comply; levers return to within 1/2" (13mm) of door face.

*UL /ULC-UL10C Positive Pressure*All locks with 1/2" (13mm) throw latchbolt listed for A label and lesser class 4' x 10' single doors. All locks with 3/4" (19mm) throw latchbolt listed for A label and lesser class 8' x 10' pairs of doors. Letter F and UL symbol on latch front indicate listing.

Any retrofit or other field modification to a fire rated opening can potentially impact the fire rating of the opening, and Corbin Russwin, Inc. makes no representations or warranties concerning what such impact may be in any specific situation. When retrofitting any portion of an existing fire rated opening, or specifying and installing a new fire-rated opening, please consult with a code specialist or local code official (Authority Having Jurisdiction) to ensure compliance with all applicable codes and ratings.

45482 07/24

CLX3300 IN100 Cylindrical Lock

Build your order string:

					Required Options		Other Options
Function	Trim	Finish	Handing	Technology Code	Reader Code	Reader Modifier	Cylinder, Strike, Door Thickness
CLX33134				IN100	BIPS		_

For finish, additional cylinder, and/or mechanical options, please refer to page 13.

Series/Function	Туре	Function Description
CLX33134 With Key Override	Entry	 Latch retracted by inside lever at all times. Key outside retracts latch. Outside lever locked (freewheeling) except when in "passage" mode or valid user code entered.

Reader Modifier	Description
В	Black reader, black trim
MB	Black reader, metal trim

Note: Metal trim for the reader is supplied in the finish specified in the order string.

Trim

CLX3300 IN100 Cylindrical Lock

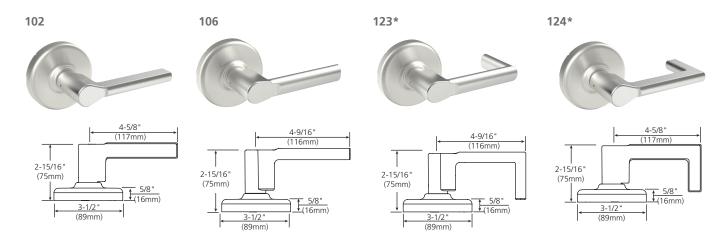
Levers - Solid Cast Zinc

Armstrong AZ Newport* NZ Princeton* PZ 4-1/2* (105mm) 2-15/16* (75mm) (75mm)

5" (127mm)

3-1/2

(89mm)

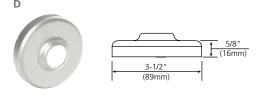

5/8" (16mm)

Decorative Levers

3-1/2

(89mm)

5/8" (16mm)



3-1/2

(89mm)

5/8'

Rose Wrought Brass

^{*}Lever with return to within 1/2" of door face.

Quick Codes

CLX3300 IN100 Cylindrical Lock

Cylinders and Keying		
Description	Specify	
Conventional 6-pin	(standard)	
Conventional 7-pin	7P	
Less Cylinder(s)	LC	
LFIC		
LFIC 6-pin	C6	
LFIC 6-pin Less Core	CL6	
LFIC 6-Pin Disposable Core	CT6D	
LFIC 6-pin with Temporary Construction Core (Red)	CT6R	
LFIC 6-pin with Temporary Construction Core (Blue)	СТ6В	
LFIC 6-pin with Temporary Construction Core (Green)	CT6G	
LFIC 7-pin	C7	
LFIC 7-pin Less Core	CL7	
LFIC 7-Pin Disposable Core	CT7D	
LFIC 7-pin with Temporary Construction Core (Red)	CT7R	
LFIC 7-pin with Temporary Construction Core (Blue)	СТ7В	
LFIC 7-pin with Temporary Construction Core (Green)	CT7G	
SFIC (all lever designs)		
SFIC 6-pin	C6S	
SFIC 6- or 7-pin Disposable Core	CTSD	
SFIC 6-pin with Temporary Construction Core (Blue)	CT6SB	
SFIC 7-pin	C7S	
SFIC 7-pin with Temporary	CT7SB	
Construction Core (Blue)	CITSD	
Security		
Security	HS	
Security LFIC	CHS	
Access 3®		
Access 3 Patented Fixed Core	AP	
Access 3 Security Fixed Core	AS	
Access 3 High Security Fixed Core	AHS	
Access 3 Patented LFIC	ACP	
Access 3 Security LFIC	ACS	
Access 3 High Security LFIC	ACHS	
Pyramid		
Pyramid Security Fixed Core	PS	
Pyramid High Security Fixed Core ¹	PHS	
Pyramid Security LFIC	PCS	
Pyramid High Security LFIC	PCHS	
Pyramid LFIC Less Core	CLP	
Pyramid with Temporary Construction Core	СТР	
Pyramid Disposable Core	CTPD	

		_	_		_
Cv	lind	lers	and	Keι	/inc

Cyllinders and Keyling	
Description	Specify
Keying and Keys	
0-bitted with 2 blank keys	(standard)
Keyed Random	KR
Construction Master Keyed	CMK
2 keys per lock	(standard)
More than 2 keys	KY# (e.g., KY6)
Visual Key Control (VKC)	
No bitting or keyset stamping on keys	VKC0
Keys only	VKC1
Cylinders and keys (not for AS, AHS, ACS, ACHS, HS, CHS, PHS or PCHS)	VKC2
Cylinders only (not for AS. AHS, HS, ACS, ACHS, CHS, PHS or PCHS)	VKC3
Concealed Key Control (CKC)	
CKC cylinders with VKC keys	CKC2
CKC cylinders only (not for AS, AHS, ACS, ACHS, PHS, PCHS)	CKC3
Schlage® C keyway cylinder (0-Bitted or KR)¹	С
SARGENT® LA keyway cylinder (0-Bitted)¹	LA

Finish

Description	Specify
Polished Brass, Clear Coated	605
Satin Brass, Clear Coated	606
Polished Bronze, Clear Coated	611
Satin Bronze, Clear Coated	612
Dark Oxidized Satin Bronze, Oil Rubbed	613
Dark Oxidized Satin Bronze - Equivalent	613E
Polished Nickel	618
Satin Nickel	619
Polished Chrome	625
Satin Chrome	626
Black Oxidized Bronze, Oil Rubbed	722
Satin Chrome with MicroShield®	626C
Black Suede Powder	BSP
White Suede Powder	WSP

Backset

Description	Specify
2-3/4" (70mm)	(standard)
3-3/4" (95mm)	B334
5" (127mm)	B500

Miscellaneous Options

Description	Specify
Spanner head screws	M02
Torx® head screws	M04
Less cylinder, with tailpiece for Schlage® 6-pin fixed core cylinder (all designs)	M06
Lever to accept 6 or 7-pin SFIC (all designs)	M08
Lever to accept SARGENT® 6-pin fixed core cylinder (all designs)	M09
Rounded corners on latch front	M13
3/4" (19mm) throw fire latch ¹	M16
ANSI wrought strike box	M17
Knurling outside and inside (AZ, NZ, PZ only)	M20 ¹
Knurling outside only (AZ, NZ, PZ only)	M21 ¹
Knurling inside only (AZ, NZ, PZ only)	M22 ¹
Abrasive coat outside and inside (AZ, NZ, PZ only)	M23
Abrasive coat inside only (AZ, NZ, PZ only)	M24
Abrasive coat outside only (AZ, NZ, PZ only)	M25
Lever to accept Schlage® LFIC (AZ, NZ, PZ only)	M69
Rigid outside lever when locked	M200
Less cylinder, with tailpiece for ASSA ABLOY ACCENTRA™ 6-pin fixed core cylinder (all designs)	YC
Less cylinder, with tailpiece for ASSA ABLOY ACCENTRA™ 7-pin fixed core cylinder (all designs)	YC7
Lever to accept ASSA ABLOY ACCENTRA™ 6-pin LFIC (AZ, NZ, PZ only)	YRC

¹ All levers provided in a powder coat finish will be supplied with an abrasive coating

Strikes

Strikes		
Lip to Center	ANSI Curved Lip Specify	Curved Lip Box Specify
1" (25mm)	SA100	SC100
1-1/8" (29mm)	SA118	SC118
1-1/4" (32mm)	(standard)	SC114
1-3/8" (35mm)	SA138	SC138
1-1/2" (38mm)	SA112	SC112
1-3/4" (44mm)	SA134	SC134
2" (51mm)	SA200	SC200
2-1/4" (57mm)	SA214	SC214
2-1/2" (64mm)	SA212	SC212
2-3/4" (70mm)	SA234	SC234
3" (76mm)	SA300	SC300

Door Thickness

Description	Specify
1-3/4" (44mm) - 2" (51mm)	(standard)
2" (51mm) - 2-1/4" (57mm)	D214

Features

ED5000N IN100 Exit Devices

ED5000 Exit Device With 9100 Series Trim

Features

EcoFlex® Technology Reduces energy consumption by up to 95%

Handing

Device is handed but easily field reversible. Lever trim is handed.

Bar Length

Easily field cut to size.

Standard: 36" (914mm) bar fits 30" - 36"

(762mm-914mm) door.

Optional: 24" (610mm) bar fits 24" (610mm) door: specify W024

(610mm) door; specify W024. Optional: 48" (1219mm) bar fits 36"-48"

(914mm-1219mm) door; specify W048.

Door Thickness

1-3/4" (44mm) standard.

Optional: 2" (51mm); specify D200. Optional: 2-1/4" (57mm); specify D214.

Stile

Minimum width 4-1/2" (114mm).

Latchbolt

Rim: 3/4" (19mm) throw stainless steel pullman-type latchbolt with stainless steel auxiliary deadlocking latch standard SecureBolt: 3/4" (19mm) projection x 1" wide deadbolt- style latchbolt with positive deadlocking by auxiliary bolt

Mortise: 2-piece mechanical 3/4" throw deadlocking stainless steel latchbolt

Monitoring

Request to Exit (Non-Handed)
Door Position Switch (Supplied and mounted above the lock. Connects directly into the lock's electronics.)

Materials

Heavy-duty cold-forged steel chassis; heavy-gauge steel mechanisms, electroplated for corrosion resistance; finished parts are brass, bronze or stainless steel; stainless steel springs; nylon bearings.

Projection

3-1/4" (83mm) active, 2-3/4" (70mm) dogged.

Dogging

Standard on panic devices; single-point 1/4 turn hex key dogging. Optional: less dogging, specify M51. Optional: cylinder dogging, specify M52. Mechanical dogging not available on fire-rated devices.

Fasteners

Standard on panic devices: machine screws and wood door fasteners.

Standard on fire-rated devices: sex nuts and bolts.

Optional on panic devices: sex nuts and bolts for use on wood, composite, or unreinforced metal doors; specify M54. Optional wood screws for use on approved fire-rated solid wood or wood core doors. Specify M64.

Strike

Optional strikes available; see Options and Accessories, page 17.

Cylinders

Cylinder not included unless specified. See Quick Codes, page 17.

Shim Kit

Optional for mounting device over raised vision light molding; specify M58.

Warranty Five-year limited.

Certification/Compliance

ANSI/BHMA

Meets A156.3, Type 2, Grade 1. UL /cUL

All devices listed for safety as panic hardware; devices comply with UL 305 standards for panic hardware. Three-hour fire-rated devices listed as fire exit hardware for A label and lesser class 8' x 8' double doors; UL symbol on active case cover indicates listing.

Any retrofit or other field modification to a fire- rated opening can potentially impact the fire rating of the opening, and Corbin Russwin, Inc. makes no representations or warranties concerning what such impact may be in any specific situation. When retrofitting any portion of an existing fire rated opening, or specifying and installing a new fire-rated opening, please consult with a code specialist or local code official (Authority Having Jurisdiction) to ensure compliance with all applicable codes and ratings.

California State Reference Code This product has been approved by the California State Fire Marshal pursuant to section 13144.1 of the California Health and Safety Code.

NFPA

All exit devices comply with NFPA 101 Life Safety Code. All fire-rated devices comply with NFPA 80 Fire Doors and Windows. ADA Lever trims and pulls comply with Americans with Disabilities Act.

45482 07/24

INI100 14

ED5000N IN100 Exit Devices

Build your order string:

Exit Device Only

Series/Function	Finish	Handing	Technology Code	Misc. Options	Door Width
ED5634LN	630	LHR	IN100	M51-M54	W048

Trim Only

Lever/Function	Finish	Handing	Technology Code	Reader Code	Reader Modifier	Cylinder	Door Thickness
N9M134	630	LHR	IN100	BIPS	В	6P	D214

Exit Device with Trim

Series Function	Lever Function	Finish	Handing	Technology Code	Reader Code	Reader Modifier	Cylinder	Door Thickness	Door Width
ED5634LN	N9M134	630	LHR	IN100	BIPS	В	6P	D214	W048

Series/Function	Туре	Function Description
ED5200(A)N & ED5200S(A)N x 9133	Rim Exit Device No Key Override	 Latch retracted by inside push pad at all times Outside lever locked (freewheeling) except when in passage mode or valid user code entered
ED5200(A)N & ED5200S(A)N x 9134	Rim Exit Device With Key Override	 Latch retracted by inside push pad at all times Outside lever locked (freewheeling) except when in passage mode or valid user code entered Outside cylinder override allows lever to retract latch
ED5633(A)LN x 9M133	Mortise Exit Device No Key Override	 Latch retracted by inside push pad at all times Outside lever rigid except when in passage mode or valid user code entered
ED5634(A)LN x 9M134	Mortise Exit Device With Key Override	 Latch retracted by inside push pad at all times Outside lever rigid except when in passage mode or valid user code entered Outside cylinder override retracts latch

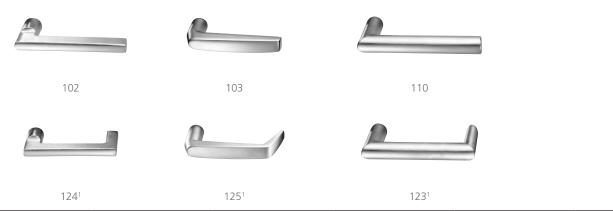
Reader Modifier	Description
В	Black reader, black trim
MB	Black reader, metal trim

Note: Metal trim for the reader is supplied in the finish specified in the order string. It is not available in stainless steel (629/630/630C) but will be plated to match.

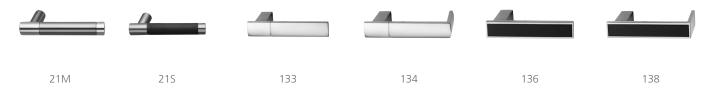
ED5000N IN100 Exit Devices

Finishes

Specify
605
606
611
612
613
613E


Description	Specify
Polished Nickel	618
Satin Nickel	619
Polished Chrome	625
Satin Chrome	626
Satin Chrome with MicroShield®	626C
Bright Stainless Steel	629*
Satin Stainless Steel	630*

Description	Specify
Satin Stainless Steel with MicroShield®	630C*
Black Oxidized Bronze, Oil Rubbed	722
Black Suede Powder	BSP
White Suede Powder	WSP


^{*}Metal escutcheon trim (MB and MW) plated to match

Levers

The levers shown here are some of our most popular styles from the Muséo Collection. To see the complete range of levers, refer to pages 30-32.

Premium Levers

^{1.} Lever returns within 1/2" (13 mm) of door face.

Quick Codes

ED5000N IN100 Exit Devices

Cylinders and Keying	
Description	Specify
Conventional 6-pin	(standard)
Conventional 7-pin	7P
Less Cylinder(s)	LC
LFIC	
LFIC 6-pin	C6
LFIC 6-pin with Temporary	CTCD.
Construction Core (Red)	CT6R
LFIC 6-pin with Temporary Construction Core (Blue)	СТ6В
LFIC 6-pin with Temporary Construction Core (Green)	CT6G
LFIC 6-pin Less Core	CL6
LFIC 7-pin	C7
LFIC 7-pin with Temporary	C/
Construction Core (Red)	CT7R
LFIC 7-pin with Temporary Construction Core (Blue)	СТ7В
LFIC 7-pin with Temporary Construction Core (Green)	CT7G
	CL7
LFIC 7-pin Less Core	CL7
SFIC	CLCC
SFIC 6-pin with Less Core	CLS6
SFIC 6-pin with SFIC disposable temporary core	CT6SD
SFIC 7-pin with Less Core	CLS7
SFIC 7-pin with Less Core	CL37
disposable temporary core	CT7SD
Security	:
Security	HS
Security IC	CHS
Access 3®	0.15
Access 3® Patented	AP
Access 3® Security	AS
Access 3® High Security	AHS
Access 3® Patented IC	ACP
Access 3® Security IC	ACS
Access 3® High Security IC	ACHS
Pyramid	ACID
Pyramid Fixed Core	PHS
Pyramid IC	PCHS
Pyramid IC Less Core	CLP
Pyramid with Temporary	СТР
Construction Core Pyramid Security	DC
	PS PCS
Pyramid Security IC	7
Pyramid Disposable Core	CTPD
Keying and Keys	CTCD
6-pin Disposable Core	CT6D CT7D
7-pin Disposable Core	
Keyed Random (Standard)	KR
Construction Master Keyed (not available for Pyramid)	CMK
2 Keys per Cylinder	(standard)
More than 2 Keys	KY#
Wore than 2 Keys	(e.g., KY6)

Cylinders and Keying (cont.)

Description	Specify
Visual Key Control	
No Keying Data Stamped - on Key or Cylinder	VKC0
Keys Only	VKC1
Cylinders and Keys (not for HS, CHS, PHS or PCHS)	VKC2
Cylinders Only (not for HS, CHS, PHS or PCHS)	VKC3
Concealed Key Control (CKC)	
CKC Cylinders with VKC Keys	CKC2
CKC Cylinders Only (not for PHS, PCHS)	CKC3

Finish

Description	Specify
Polished Brass, Clear Coated	605
Satin Brass, Clear Coated	606
Polished Bronze, Clear Coated	611
Satin Bronze, Clear Coated	612
Dark Oxidized Satin Bronze, Oil Rubbed	613
Dark Oxidized Satin Bronze - Equivalent	613E
Polished Nickel	618
Satin Nickel	619
Polished Chrome	625
Bright Stainless Steel	629*
Satin Stainless Steel	630*
Satin Stainless Steel with MicroShield®	630C*
Black Oxidized Bronze, Oil Rubbed	722
Black Suede Powder	BSP
White Suede Powder	WSP

^{*}Metal escutcheon trim (MB) plated to match

Strikes

Description	Specify
Rim strike S02	S02
Mortise ANSI strike for pairs of doors with astragal	SS078
Open back strike for 1-3/4" doors	SB134
Open back strike for 2-1/4" doors	SB214

Door Thickness

Door Thickness	Specify
1-3/4" (44mm)	(standard)
2" (51mm)	D200
2-1/4" (57mm)	D214

Door Width

Door Width	Specify
24" (610mm)	W024
36" (914mm)	(standard)
48" (1219mm)	W048

Handing

Hand	Specify
Right Hand Reverse	RHR
Left Hand Reverse	LHR

Note: Arrow indicates secure side of door.

Miscellaneous Options

Description	Specify
Torx® head screws	M04
Windstorm	M107
ANSI wrought strike box	M17
Knurling outside and inside ¹	M20 ²
Knurling outside only ¹	M21 ²
Knurling inside only ¹	M22 ²
Abrasive coat outside and inside ¹	M23
Abrasive coat inside only ¹	M24
Abrasive coat outside only ¹	M25
Less dogging	M51
Cylinder dogging	M52
Sex nuts and bolts (SNBs)	M54
Shim kit (for vision light)	M58
Wood screws for use on fire-rated solid wood or wood core doors	M64

- Not available with Vineyard or Museo levers.
 All levers provided in a powder coat finish will be supplied with an abrasive coating

Features

PED5000 IN100 Exit Devices

PED5000 Exit Device With 9100PT Series Trim

Features

EcoFlex® Technology

reduces energy consumption, which lowers operation cost and reduces the number of power supplies required.

Handing

Device is handed but easily field reversible. Lever trim is handed.

Bar Length

Easily field cut to size.

W032: 26" to 32" (66 cm to 81 cm) W036: 32.5" to 36" (84 cm to 91 cm) W042: 36.5" to 42" (94 cm to 107 cm) W048: 42.5" to 48" (110 cm to 122 cm)

Note: Must specify rail length on order string to receive factory cut rail. (ex: W026 - 26" wide door) Available in 1/8" increments.

Door Thickness

1-3/4" (44mm) standard. Specify D134. Optional: 2" (51mm); specify D200. Optional: 2-1/4" (57mm); specify D214.

Stile

Minimum width 4-1/2" (114mm).

Latchbolt

Rim: 3/4" (19mm) throw stainless steel pullman-type latchbolt with stainless steel auxiliary deadlocking latch standard Mortise: 2-piece mechanical 3/4" throw deadlocking stainless steel latchbolt

Top: 3/4" (19mm) throw, stainless steel pullman-type with automatic deadlatching.

Bottom: 5/8" (16mm) throw deadbolt, held retracted during door swing

Monitoring

Request-to-Exit (Non-Handed)

Door Position Switch (DPS)* (Supplied and mounted above the lock. Connects directly into the lock's electronics.)

Materials

Heavy-duty cold-forged steel chassis; heavy-gauge steel mechanisms, electroplated for corrosion resistance; finished parts are brass, bronze or stainless steel; stainless steel springs; nylon bearings.

Projection

3.10" (79mm) active, 2.18" (55mm) dogged.

Dogging

Standard on panic devices; single-point 1/4 turn hex key dogging. Optional: less dogging, specify M51. Optional: cylinder dogging, specify M52. Mechanical dogging not available on fire-rated devices.

Fasteners

Standard on panic devices: machine screws and wood door fasteners.

Standard on fire-rated devices: sex nuts and bolts.

Optional on panic devices: sex nuts and bolts for use on wood, composite, or unreinforced metal doors; specify M54.

Strike

Optional strikes available; see Options and Accessories, page 22.

Cylinders

Cylinder not included unless specified. See Quick Codes, page 22.

Shim Kit

Reference PED5000 catalog for optional shims.

Warranty Ten-year limited mechanical 2-year limited electrical

Certification/Compliance

ANSI

Meets A156.3, Type 2, Grade 1. UL /cUL

Available with ADA Standard for Accessible Design and California Building Code. All devices listed for safety as panic hardware; devices comply with UL 305 standards for panic hardware. Three-hour fire-rated devices listed as fire exit hardware for A label and lesser class 8' x 8' double doors; UL symbol on active case cover indicates listing.

Any retrofit or other field modification to a fire- rated opening can potentially impact the fire rating of the opening, and Corbin Russwin, Inc. makes no representations or warranties concerning what such impact may be in any specific situation. When retrofitting any portion of an existing fire rated opening, or specifying and installing a new fire-rated opening, please consult with a code specialist or local code official (Authority Having Jurisdiction) to ensure compliance with all applicable codes and ratings.

California State Reference Code This product has been approved by the California State Fire Marshal pursuant to section 13144.1 of the California Health and Safety Code.

NFPA

All exit devices comply with NFPA 101 Life Safety Code. All fire-rated devices comply with NFPA 80 Fire Doors and Windows. ADA Lever trims and pulls comply with Americans with Disabilities Act.

*For Double-door applications the DPS is installed in-between the active and inactive leaves. The DPS monitors both doors, but the REX only monitors the active leaf. To prevent door-force or door-held alarms, the alarms must be disabled.

PED5000 IN100 Exit Devices

Build your order string:

Exit Device with Trim

Series Function	Lever Function	Finish	Handing	Technology Code	Reader Code	Reader Modifier	Cylinder	Door Thickness	Door Width
PED5634	N9M134PT	630	LHR	IN100	BIPS	В	6P	D214	W048

Rim

Surface Vertical Rod Ease of Access (EA-Option)

Mortise

Concealed Vertical Rod Ease of Access (EA- Option)

Function	Туре	Function Description	Trim
PED5233 (A)	PED5233 - IN100 Series Rim Exit Device, No Key Override PED5233A - IN100 Series Rim Exit Device, Fire-Rated, No Key Override	Latch retracted by inside push pad at all times Outside lever locked (rigid) except when in passage mode or valid user code entered No Key Override	8133PT/9133PT
PED5234 (A)	PED5234 - IN100 Series Rim Exit Device, With Key Override PED5234A - IN100 Series Rim Exit Device, Fire-Rated, With Key Override	Latch retracted by inside push pad at all times Outside lever locked (rigid) except when in passage mode or valid user code entered Outside cylinder override allows lever to retract latch With Key Override	8134PT/9134PT
PED5433 (A)	PED5433 - IN100 Series SVR Exit Device, No Key Override PED5433A - IN100 Series SVR Exit Device, Fire-Rated, No Key Override	Latch retracted by inside push pad at all times Outside lever locked (rigid) except when in passage mode or valid user code entered No Key Override. EA- Option Required.	8M133PT/9M133PT
PED5633 (A)	PED5633 - IN100 Series Mortise Exit Device, No Key Override PED5233A - IN100 Series Mortise Exit Device, Fire-Rated, No Key Override	Latch retracted by inside push pad at all times Outside lever rigid except when in passage mode or valid user code entered No Key Override	8M133PT/9M133PT
PED5634 (A)	PED5633 - IN100 Series Mortise Exit Device, No Key Override PED5233A - IN100 Series Mortise Exit Device, Fire-Rated, No Key Override	Latch retracted by inside push pad at all times Outside lever rigid except when in passage mode or valid user code entered With Key Override	8M134PT/9M134PT
PED5833 (A)	PED5833 - IN100 Series CVR Exit Device, No Key Override PED5833A - IN100 Series CVR Exit Device, Fire-Rated, No Key Override	 Latch retracted by inside push pad at all times Outside lever rigid except when in passage mode or valid user code entered No Key Override. EA- Option Required. 	8CV133PT/9CV133PT

PED5000 IN100 Exit Devices

Reader Modifier	Description
В	Black reader, black trim
MB	Black reader, metal trim

Note: Metal trim for the reader is supplied in the finish specified in the order string. It is not available in stainless steel (629/630/630C) but will be plated to match.

Reader Code	Credentials
BIPS	HID Prox®, iCLASS®, iCLASS SE®,iCLASS® Seos®, SIO on MIFARE® Classic, SIO on MIFARE DESFire® EV1 MIFARE Classic, MIFARE DESFire EV1, HID Mobile Access, Apple Wallet, Google Pay

PED5000 IN100 Exit Devices

Trim Finishes

Description	Specify
Polished Brass, Clear Coated	605
Satin Brass, Clear Coated	606
Polished Bronze, Clear Coated	611
Satin Bronze, Clear Coated	612
Dark Oxidized Satin Bronze, Oil Rubbed	613
Dark Oxidized Satin Bronze - Equivalent	613E
Oxidized satin, bronze, clear coated	613L

Description	Specify
Polished Nickel	618
Satin Nickel	619
Satin Nickel with Microshield®	619C
Polished Chrome	625
Satin Chrome	626
Satin Chrome with MicroShield®	626C
Bright Stainless Steel	629*
Satin Stainless Steel	630*

Description	Specify
Satin Stainless Steel with MicroShield®	630C*
Black Suede Powder	BSP
White Suede Powder	WSP

^{*}Metal escutcheon trim (MB) plated to match

Levers

The levers shown here are some of our most popular styles from the Muséo Collection. To see the complete range of levers, refer to pages 30-33.

Premium Levers

1. Lever returns within 1/2" (13 mm) of door face.

Quick Codes

PED5000 IN100 Exit Devices

Cylinders and Keying	
Description	Specify
Conventional 6-pin	(standard)
Conventional 7-pin	7P
Less Cylinder(s)	LC
LFIC	
LFIC 6-pin	C6
LFIC 6-pin with Temporary Construction Core (Red)	CT6R
LFIC 6-pin with Temporary Construction Core (Blue)	СТ6В
LFIC 6-pin with Temporary Construction Core (Green)	CT6G
LFIC 6-pin Less Core	CL6
LFIC 7-pin	С7
LFIC 7-pin with Temporary Construction Core (Red)	CT7R
LFIC 7-pin with Temporary Construction Core (Blue)	СТ7В
LFIC 7-pin with Temporary Construction Core (Green)	CT7G
LFIC 7-pin Less Core	CL7
SFIC	
SFIC 6-pin with Less Core	CLS6
SFIC 6-pin with SFIC disposable temporary core	CT6SD
SFIC 7-pin with Less Core	CLS7
SFIC 7-pin with SFIC disposable temporary core	CT7SD
Security	
Security	HS
Security IC	CHS
Access 3 [®]	
Access 3® Patented	AP
Access 3® Security	AS
Access 3 [®] High Security	AHS
Access 3® Patented IC	ACP
Access 3® Security IC	ACS
Access 3® High Security IC	ACHS
Pyramid	
Pyramid Fixed Core	PHS
Pyramid IC	PCHS
Pyramid IC Less Core	CLP
Pyramid with Temporary Construction Core	CTP
Pyramid Security	PS
Pyramid Security IC	PCS
Pyramid Disposable Core	CTPD
UL Housing	
UL LFIC 6-pin housing less core	CL6AH
UL LFIC 6-pin housing w/ disposable core	CTAHD
UL LFIC 6-pin w/ temporary construction core (red)	CT6AHR
UL LFIC 6-pin w/ temporary construction core (blue)	СТ6АНВ
UL LFIC 6-pin w/ temporary construction core (green)	CT6AHG

Cylinders and Keying (Cont.)

Description	Specify	
Keying and Keys		
6-pin Disposable Core	CT6D	
7-pin Disposable Core	CT7D	
Keyed Random (Standard)	KR	
Construction Master Keyed (not available for Pyramid)	СМК	
2 Keys per Cylinder	(standard)	
More than 2 Keys KY		
Visual Key Control		
No Keying Data Stamped on Key or Cylinder	VKC0	
Keys Only	VKC1	
Cylinders and Keys (not for HS, CHS, PHS or PCHS)	VKC2	
Cylinders Only (not for HS, CHS, PHS or PCHS)	VKC3	
Concealed Key Control (CKC)		
CKC Cylinders with VKC Keys	CKC2	
CKC Cylinders Only (not for PHS, PCHS)	CKC3	

Exit Device Finishes

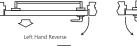
Description	Specify
Polished Brass, Clear Coated	605
Satin Brass, Clear Coated	606
Polished Bronze, Clear Coated	611
Satin Bronze, Clear Coated	612
Dark Oxidized Satin Bronze, Oil Rubbed	613
Dark Oxidized Satin Bronze - Equivalent	613E
Oxidized Satin, Bronze, Clear Coated	613L
Bright Stainless Steel	629*
Satin Stainless Steel	630*
Satin Stainless Steel with Micro- Shield®	630C*
Black Suede Powder Coat	BSP
White Suede Powder Coat	WSP

Note; Mixed finishes available please see PED5000 Series Catalog

Strikes

Description	Specify
Half mortised strike	613
Mortised strike	642
Door pairs w/o mullion	644
Surface strike	649
Blade Stop Strike	657
Mullion Strike	658
Curved Lip Strike	C908
Open Back Strike	815
Flat lip strike	908

Door Thickness


Door Thickness	Specify
1-3/4" (44mm)	D134 (standard)
2" (51mm)	D200
2-1/4" (57mm)	D214

Door Width			
	Inches	F	ractions
Code	Measurement	Code	Measurement
W024	24"	1	1/8"
W025	25"	2	1/4"
W026	26"	3	3/8"
W027	27"	4	1/2 "
W028	28"	5	5/8"
W029	29"	6	3/4"
W030	30"	7	7/8"
W031	31"		
W032	32"		
W033	33"		
W034	34"		
W035	35"		
W036	36"		
W037	37"		
W038	38"		
W039	39"		
W040	40"		
W041	41"		
W042	42"		
W043	43"		
W044	44"		
W045	45"		
W046	46"		
W047	47 "		
W048	48"		

Note; Reference PED5000 catalog for door width example.

Handing

Hand	Specify
Right Hand Reverse	RHR
Left Hand Reverse	LHR
LHR	RHR

Note: Arrow () indicates secure side of door.

Miscellaneous Options

•	
Description	Specify
Security Fasteners	M04
Milled Outside Lever	M21 ¹
Abrasive Strip on Rail & Abrasive Coating on Outside Lever	M23
Abrasive Coating on Outside Lever	M24
Abrasive Strip on Rail	M25
Passage Dogging Indicator	M48
Less dogging	M51
Cylinder dogging	M52
Thrubolts	M54
Windstorm	M107
Ease of Access (Required for PED5400 and PED5800)	EA

1 Not available with Muséo levers.

INI100.22

^{*}Metal escutcheon trim (MB) plated to match

Features

Von Duprin 98/99 Series Rim Exit Devices

Mechanical Features

Certified ANSI/BHMA A156.3 Grade 1.

Key override compatible with a variety of rim cylinders. Trim prepped for cylinder (not included).

Requires Von Duprin RX switch assembly #050251-00 (supplied by others).

Provides complete coverage of door prep for Von Duprin 996 trim; call 800-810-WIRE for information on door prep coverage for other trims.

Available with Muséo Line, Vineyard Collection and all standard levers.

UL/ULC Listed for fire doors*

Matching dummy trim available for double doors.

IN Series Exit Device Functions

Lever outside rigid except when in passage mode or valid user code entered.

Always allows free egress.

Request-to-Exit (REX): monitors rail position Low battery, tamper signaling standard. Door position switch (DPS, part #820F609)

supplied.

* Any retrofit or other field modification to a fire rated opening can potentially impact the fire rating of the opening, and Sargent Manufacturing Company makes no representations or warranties concerning what such impact may be in any specific situation. When retrofitting any portion of an existing fire rated opening, or specifying and installing a new fire-rated opening, please consult with a code specialist or local code official (Authority Having Jurisdiction) to ensure compliance with all applicable codes and ratings.

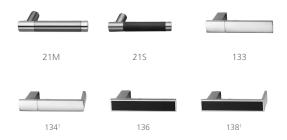
Select from the following options to order IN Series multi-point locks:

Techno	logy	Function		
IN100	Aperio wireless		231	Rim exit device, key override

Reader Modifier	Description
В	Black reader, black trim
MB	Black reader, metal trim

Note: Metal trim for the reader is supplied in the finish specified in the order string. It is not available in stainless steel (629/630/630C) but will be plated to match.

Escutcheon


CREK1 Trim for Von Duprin Retrofit Fit

Lever

The levers shown here are some of our most popular styles from the Muséo Line. To see the complete range of available levers, refer to pages 30-31.

Premium Levers

1. Lever returns within 1/2" (13 mm) of door face.

Von Duprin 98/99 Series Rim Exit Devices

Finishes

Description	Specify
Polished Brass, Clear Coated	605
Satin Brass, Clear Coated	606
Polished Bronze, Clear Coated	611
Satin Bronze, Clear Coated	612
Dark Oxidized Satin Bronze, Oil Rubbed	613
Dark Oxidized Satin Bronze - Equivalent	613E

Description	Specify
Polished Nickel	618
Satin Nickel	619
Polished Chrome	625
Satin Chrome	626
Satin Chrome with MicroShield®	626C
Bright Stainless Steel	629*
Satin Stainless Steel	630*

Description	Specify
Satin Stainless Steel with MicroShield®	630C*
Black Oxidized Bronze, Oil Rubbed	722
Black Suede Powder	BSP
White Suede Powder	WSP

^{*}Metal escutcheon trim (MB) plated to match

Handing

_	
Hand	Specify
Right Hand Reverse	RHR
Left Hand Reverse	LHR

Note: Arrow indicates secure side of door.

Build your order string:

				Required Options			Other Options	
Function	Trim	Finish	Handing	Technology Code	Reader Code	Escutcheon	Reader Modifier	Cylinder, Strike, Door Thickness
231	102	605	RHR	IN100	BIPS	CREK1	В	_

For finish, additional cylinder, and/or mechanical options, please refer to page 13.

- 1. Lever returns within 1/2" (13 mm) of door face.
- 2. Gramercy levers are customized. See page 31 for ordering information

Features

BL6600/FE6600/MP6600 Series Multi-Point Locks

Features

Handing

Handed; quick reversibility. The lockset can be re-handed without disassembling the lock body.

Door Thickness

1-3/4" thick door only; fully integrated – 6600 is part of a complete ASSA ABLOY windstorm solution

Backset

2-3/4" (70mm).

Lockcase

Heavy-gauge chrome plated steel, 5-7/8" (149mm) x 4" (102mm) x 15/16" (24mm).

Front

Heavy-gauge steel, 8" (203mm) x 1-1/4" (32mm) x 3/32" (2mm). Accommodates non-beveled and beveled doors 1/8" (3mm) in 2" (51mm).

Armored Front

Wrought brass, bronze or stainless steel attached by machine screws to lockcase front

Device Type

Available with both BL (Blast) and FE (FEMA) prefixes

Top Bolt

Adjustable stainless steel 3/4" square bolt with 11/16" engagement; 5/16" steel reinforcement plate

Installation

Concealed vertical assembly (rods, latches and cassette) pre-installed in door

Bottom Bolt

Adjustable stainless steel 3/4" square bolt with 5/8" engagement; 1/4" steel reinforcement plate

Center Bolts

Latchbolt is stainless steel with 3/4" projection. One piece, anti-friction reversible catch. Deadbolt is one piece hardened stainless steel with 1" projection Lock Front

1/8" steel mortise front reinforced with 13/64" thick lock edge stiffener

Center Bolt Strike

1/4" thick stainless steel

Backset

2-3/4" standard

Door Thickness

1-3/4" standard

Door Height

7'0" - 8'0"

Maximum Opening

Single door 4'0" x 8'0" and double doors 8'0" x 8'0" $\,$

Strike

Wrought brass, bronze or stainless steel ANSI straight lip standard, 4-7/8" (124mm) x 1-1/4" (32mm) x 1-1/8" (29mm) lip to center.

Environmental Specifications

Operating Temperature:

-13°F (-25°C) to 151°F (66°C)

Operating humidity:

Operates in condensing environments

*always refer to the installation instructions for correct procedure when installing in condensing environments

Monitoring

- Deadbolt
- Latch bolt
- DPS integrated into lock body
- Request to exit

Warranty

7-year limited mechanical. 2-year limited electrical.

Shipping Weight

Approx. 11 lbs.

Certification/Compliance

ANSI/BHMA

Meets A156.37, Operational Grade 1 and Security Grade 1 requirements. Meets A117.1 Accessibility Code. Meets A156.25 requirements.

UL /ULC-UL10C Positive Pressure

All locks listed for A label and lesser class doors, 4' (122cm) x 8' (305cm) single or 8' (244cm) x 8' (305cm) pair. Letter F and UL symbol on armored front indicate listing.

Windstorm Certification

Windstorm certification information is listed in the Corbin Russwin 6600 Series catalog.

Any retrofit or other field modification to a fire rated opening can potentially impact the fire rating of the opening, and Corbin Russwin, Inc. makes no representations or warranties concerning what such impact may be in any specific situation. When retrofitting any portion of an existing fire rated opening, or specifying and installing a new fire-rated opening, please consult with a code specialist or local code official (Authority Having Jurisdiction) to ensure compliance with all applicable codes and ratings.

BL6600/FE6600/MP6600 Series Multi-Point Locks

Build your order string:

					Required Options		
Function	Trim	Finish	Handing	Technology Code	Reader Code	Reader Modifier	Other Options
66135				IN100	BIPS		

For finish, additional cylinder, and/or mechanical options, please refer to page 13.

Series/Function	Туре	Function Description
BL/FE/MP66135 No Key Override With Deadbolt ¹	Entry	 Deadlocking latch Latch and deadbolt retracted by inside lever at all times Outside lever rigid except when in "passage" mode or valid user code entered
BL/FE/MP66136 Key Override With Deadbolt	Entry With Deadbolt	 Key outside retracts deadbolt. Key outside also retracts latch and unlocks outside when trim is locked electronically Top and bottom rods retracted by lever Deadbolt projected and retracted by thumbturn or key

Reader Modifier	Description
В	Black reader, black trim
MB	Black reader, metal trim

Note: Metal trim for the reader is supplied in the finish specified in the order string. It is not available in stainless steel (629/630/630C) but will be plated to match.

Finishes

Description	Specify
Polished Brass, Clear Coated	605
Satin Brass, Clear Coated	606
Polished Bronze, Clear Coated	611
Satin Bronze, Clear Coated	612
Dark Oxidized Satin Bronze, Oil Rubbed	613
Dark Oxidized Satin Bronze - Equivalent	613E

Description	Specify
Polished Nickel	618
Satin Nickel	619
Polished Chrome	625
Satin Chrome	626
Satin Chrome with MicroShield®	626C
Black Oxidized Bronze, Oil Rubbed	722

Description	Specify
Bright Stainless Steel	629*
Satin Stainless Steel	630*
Satin Stainless Steel with MicroShield®	630C*
Black Suede Powder Coat	BSP
White Suede Powder Coat	WSP

^{*}Metal escutcheon trim (MB and MW) plated to match

45482 07/24

BL6600/FE6600/MP6600 Series Multi-Point Locks

Roses

The roses shown are some of our most popular styles. To see the complete list of available roses, refer to pages 33.

E2

E41

E3

Levers

The levers shown here are some of our most popular styles from the Muséo Collection. To see the complete range of levers, refer to pages 30-31.

102

123²

124² 125²

Premium Levers

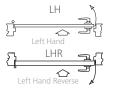
133

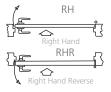
- 1 Rose design suites with IN100 reader.
- 2 Lever returns within 1/2" (13 mm) of door face.

Miscellaneous Options

21M

iviiscellarieous Options	
Description	Specify
Torx® head screws	M04
ANSI wrought strike box	M17
Knurling outside and inside ¹	M20 ²
Knurling outside only ¹	M21 ²
Knurling inside only ¹	M22 ²
Abrasive coat outside and inside ¹	M23
Abrasive coat inside only1	M24
Abrasive coat outside only ¹	M25


¹ Not available with Vineyard or Museo levers.


Thumbturns

Description	Specify
Decorative	MT1
Decorative Square	MT2
Decorative Cylinder	MT2

Handing

папипу	
Hand	Specify
Right Hand	RH
Left Hand	LH
Right Hand Reverse	RHR
Left Hand Reverse	LHR

Note: Arrow indicates secure side of door.

² All levers provided in a powder coat finish will be supplied with an abrasive coating

Alternate Power Options

Aperio® Configuration Kits

Alternate Power Options

Hard Power Option (M35)

The Hard Power option (Quick Code M35) is recommended for high traffic doors or openings that require online behavior. Corbin Russwin offers a range of power supplies suitable for this application.

Operation

Power supplies are designed to provide reliable filtered and regulated power for long life to a variety of electrified hardware components. All modular power supplies are designed to meet UL 1481 Standards.

Features

- Fire panel emergency release input
- PC Board mounted system LED indicator
- Regulated and filtered with input and output protection
- Fused line voltage input with one, four, or eight DC outputs (depending on model)
- Battery charging is provided from a separate output terminal

Electrical Specifications

- Inputs: 115VAC @600mA
- Outputs: 12/24 VDC (Current based on model), Filtered and regulated output

Listings

- UL & cUL listed 1012 General Purpose Power Supply
- Fire & Burglar Alarm Power Supply Unit URT2
- Releasing device Accessory SYSW
- Access Control Systems Units ALVY
- Burglar Alarm Systems Power Supply APHY

Model	Description
BPS-24-1	Power supply 1.0 amp @ 24 VDC output
BPS-24-2	Power supply 2 amp @ 24 VDC output
BPS-24-4	Power supply 4 amp @ 24 VDC output
BPS-12-1	Power supply 1 amp @ 12 VDC output
BPS-12-3	Power supply 3 amp @ 12 VDC output

ElectroLynx® hinges and harnesses required for hard-powered IN100 applications are available through McKINNEY.

784F199 Hard Power Kit

- Included with M35 option IN100 units
- Allows for hard powering (M35) of IN100
- Compatible with ElectroLynx® system

Aperio Configuration Kits

Aperio offers the flexibility to make field configurations easily and without any special equipment. Configuration adjustments can be made to the Aperio hub and Aperio locks using the Aperio Programming tool software and Aperio USB programing dongle from a Windows netbook or laptop with an available USB port.

- Requirements for Operation:
 - Laptop or Netbook with:
 - Windows 10
 - USB 2.0 port
- APA-10-PC Aperio Programming Application Tool Kit
 - USB Flash Drive
 - Programming Application Tool Software and License Files
 - Aperio Instructions (electronic files)
 - Tritech Tribee USB Radio Dongle (APD-10-USB)
 - HID iCLASS/Prox Card

- APD-10-USB Aperio Configuration USB Dongle
 - Tritech Tribee USB Radio Dongle
 - Included in APA-10-PC Kit
- 783F909 USB cable
 - USB cable is a stand-alone item (sold separately)

Integration Tools for ASSA ABLOY Locks

ASSA ABLOY electronic access control locks integrate with a range of industry leading access control systems. For more information on which systems support our Aperio enabled locks, please contact your local ASSA ABLOY Door Security Solutions office, www.assaabloydss.com. To learn more about how to integrate these and other ASSA ABLOY products with your system, please call 800-810-WIRE.

Options & Accessories

IN100 Aperio® Wireless Access Control

Aperio[™] Hub

The Aperio hub is available in a Mercury version for completely seamless integration into Mercury-based access control systems. Please contact your Mercury-based access control provider for ordering information.

The IN100 lock uses short distance wireless transmission (IEEE 802.15.4, 2.4 GHz) to communicate with an Aperio hub, which is connected to an access control system via IP, RS-485 or Wiegand.

Specifications:

- Wireless Communication: IEEE 802.15.4 (2.4 GHz)
- Wireless Range: 50-80 feet (depending on installed environment)
- EAC Communication: IP, RS-485 or Wiegand
- Power: Powered using Power over Ethernet (PoE) or external power supply (8-24VDC)
- Security: AES 128 encryption
- Operating Temperature: 41°F (5 °C) to 95°F (35 °C)
- Humidity: < 95% maximum (non-condensing)

Ordering Aperio Hubs

SERIES	HARDWARE VERSION	HARDWARE CONFIGURATION	CONFIGURATION CODE*
АН	20: Wiegand hub; 30: RS-485 hub; 40: IP hub	W14: Wiegand 1:1; R12: RS-485 1:8 (Mercury); or 1:16 (non- Mercury) IN2: IP 1:64	NNNN
Ex.: AH	30	R12	NNNN

^{*} NNNN is the standard configuration code for Aperio hubs. Access Control Partners should contact 800-810-WIRE for specific ordering information

Aperio Hub Accessories:

• EXT-10-ANT Aperio External Antenna

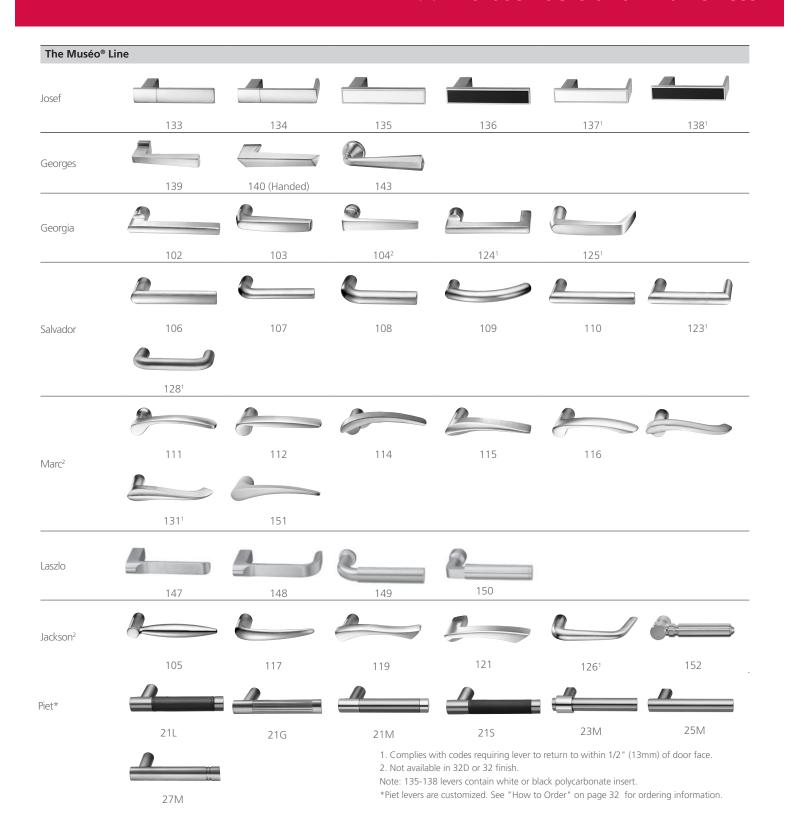
Aperio hubs are certified for use with the ASSA ABLOY external (omni-directional) antenna EXT-10-ANT. The external antenna may be used to obtain more even radio coverage (in the form of a doughnut) around the hub. Please note that the antenna does not extend the maximum range of the Aperio hub.

Specifications:

- For indoor use only
- Operating Temperature: 32°F (0 °C) to 113°F (45 °C)
- Humidity: < 95% maximum (non-condensing)

Available Trim Options

IN100 Mortise Locks and Exit Devices


Standard Leve	r A Rose	B Rose	F Rose		
Armstron		ASB	ASF		
Newpor		NSB	NSF		
Princeto		PSB	PSF		
Citation		CSB	CSF		
Dirk		DSB	DSF		
Esse		ESB	ESF		
Lustr	a LSA	LSB	LSF	Armstrong	Citation
Regi		RSB	RSF		
				D' 1 .	F *
				Dirke	Essex*
				Lustra	Newport*
				Lustia	Νεννροιτ
				Princeton*	Regis
				Timecton	negis
Vineyard™	G Rose	•			
Frasca					
Merlo	÷				
Zinfande					
Zimanue	230				Control of the contro
				Frascati	Merlot
				Zinfandel	
	:				

Available Trim Options

IN100 Mortise Locks and Exit Devices

Available Trim Options & Finishes

IN100 Mortise Locks

Grooved Insert 21G Leather Insert 21L Polished with Satin Insert 21M Santoprene™ Insert 21S

With Raised Band 23M

Plain 25M Plain with Two Grooves 27M

Piet Finish Codes

Finish	Piet Code*	Description
630	30	Satin Stainless Steel
629	29	Bright Stainless Steel
613E	3E	Dark Oxidized Satin Bronze, Equivalent
BSP	BS	Black Suede Powder Coat
WSP	WS	White Suede Powder Coat
N/A	BK	Black (Santoprene™ or leather insert)
N/A	BN	Brown (leather insert)
N/A	00	No Insert

^{*}Code used to specify Piet Collection finishes only. Use available finishes list to specify desired finish when ordering

Piet Lever Descriptions & Available Finishes

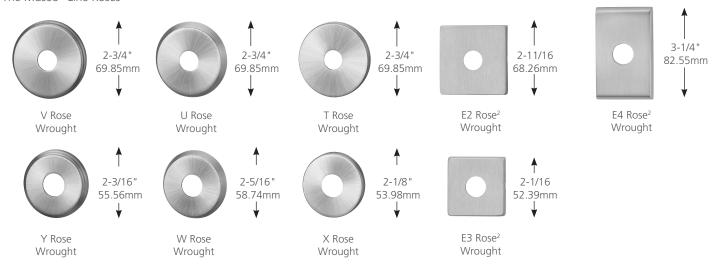
Lever Designation	Lever Description	Available Finishes (as ordered)
21G	Grooved Insert	303030, 292929, 293029, 302930, 3E003E, BS00BS OR WS00WS
21L	Leather Insert	30BK30, 30BN30, 29BK29, 29BN29, 3EBK3E, BSBKBS, WSBKWS, 3EBN3E, BSBNBS OR WSBNWS
21M	Metallic Insert	293029**
215	Santoprene Insert	30BK30, 29BK29, 3E003E, BS00BS or WS00WS
23M	Raised Band	290030, 290029, 300030, 3E003E, BS00BS OR WS00WS
25M	Plain	290029, 300030, 3E003E, BS00BS or WS00WS
27M	Two Grooves	290029, 300030, 3E003E, BS00BS or WS00WS

^{**}Two-tone finish - grip of lever is 630, balance of lever is 629. Rose/escutcheon and lock finish will be 629.

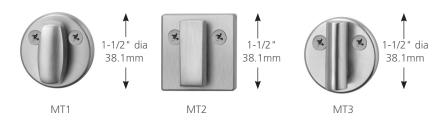
Ordering Examples

Rose Options: E2, E3, E4, T, U, V, W, X, Y

Quantity	Series/ Function	Trim	Lever Finish	Lock Finish	Hand	Thumbturn Options
2	ML20134	21LU	29BK29	629	RH	MT3
1	ML20136	23ME3	290030	629	RH	MT3

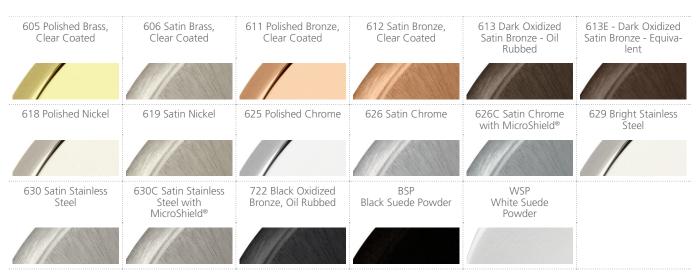


How to Order the Muséo® Piet Levers


IN100 Mortise Locks

The Muséo® Line Roses1

Thumbturns³


Specify quick code MT1, MT2, or MT3 for decorative turns. Standard thumbturn will be supplied without quick code.

Notes:

- 1. Roses only available with Muséo levers.
- 2. Square cylinder collar and thumbturn backplate automatically supplied with E2, E3, and E4 roses.
- 3. Thumbturn back plate will match shape of rose chosen (i.e. round or square).

Finishes

Common Replacement Parts

IN100 Mortise Locks

Catalog Number	Color
Outside Escutcheon (Reader), Controller & Ir	: nside Mounting Kit
IN-100-CREM01-BIPS-B	Black
IN-100-CREM01-BIPS-MB [finish]**	Black with metal trim

Catalog Number	Description	Color
Inside Escutcheon (Batt	ery Cover)	
820F489	Inside escutcheon	Black
820F525 [finish]**	Inside escutcheon	Black with metal trim

Catalog Number	Description
820F609	IN100 door position switch
IN-100-CREM04	Inside mounting kit (mounting plate and hardware)
783F909	USB cable, 10 ft.

Catalog Number	Description
Lock Bodies	
784F848 [handing]* 26D	IN100 ML20133/ML20134 Mortise lock, no deadbolt
885F980	IN100 CLX33134 Cylindrical lock, freewheeling lever (1-3/8" - 2-1/4" door)
885F990	IN100 CLX33134 Cylindrical lock, rigid lever (1-3/8" - 2-1/4" door)
816F048 [handing]*26D	ML20233/ML20234 Lock Case - No Deadbolt
816F058 [handing]*26D	ML20235/ML20236 Lock Case - With Deadbolt

6	6
Catalog Number	Description
Exit Device Replacement Parts	
N9133 [handing]* [finish]** IN100	Rim exit trim without cylinder
N9134 [handing]* [finish]** IN100	Rim exit trim with cylinder
N9M133 [handing]* [finish]** IN100	Mortise exit trim without cylinder
N9M134 [handing]* [finish]** IN100	Mortise exit trim without cylinder

^{*}Replace with handing (L, LR, R, RR)

Cover Plate Kits

Description	Part Number
IN Series mortise lock, ML20133/ML20233 (no key override, no deadbolt)	784F137 32D
IN Series mortise lock, ML20134/ML20234 (key override, no deadbolt)	784F147 32D
IN Series mortise lock, ML20235 (no key override, with deadbolt)	784F157 32D
IN Series mortise lock, ML20236 (key override, with deadbolt)	784F167 32D
IN Series cylindrical lock, CLX33134 (with key override)	784F177 32D

^{**} Select from finishes on previous page

Notes

IN100 Mortise Locks

The ASSA ABLOY Group is the global leader in access solutions. Every day, we help billions of people experience a more open world.

ASSA ABLOY Opening Solutions leads the development within door openings and products for access solutions in homes, businesses and institutions. Our offering includes doors, frames, door and window hardware, mechanical and smart locks, access control and service.

For additional information, contact your ASSA ABLOY Door Security Solutions sales consultant or visit www.corbinrusswin.com.

In U.S. Corbin Russwin 225 Episcopal Road Berlin, CT 06037 Phone: 800-543-3658 Fax: 800-447-6714 www.corbinrusswin.com In Canada ASSA ABLOY Door Security Solutions Canada 160 Four Valley Drive Vaughan, Ontario Canada L4K 4T9 Phone: 800-461-3007 Fax: 800-461-8989 www.assaabloydss.ca

MicroShield®

As part of their promise to provide innovative solutions to their customers, certain ASSA ABLOY Group brands offer the MicroShield® technology, a silver-based antimicrobial coating designed to inhibit the growth of bacteria.

Microshield® is a registered trademark of ASSA ABLOY Access and Egress Hardware Group, Inc.

The Agion antimicrobial is not intended as a substitute for good

hygiene. Coated products must still be cleaned to ensure the surfaces will be free of destructive microbes. ASSA ABLOY makes no representations or warranties, express or implied, as to the efficacy of the Agion antimicrobial. A copy of the Agion warranty is available upon request. Agion is a registered trademark of Agion Technologies, Inc., Wakefield, MA, USA